Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.217
Filtrar
1.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605010

RESUMO

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Assuntos
Fator de Crescimento de Hepatócito , Disgenesia da Tireoide , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caderinas/genética , Disgenesia da Tireoide/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542065

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant liver ailment attributed to factors like obesity and diabetes. While ongoing research explores treatments for NAFLD, further investigation is imperative to address this escalating health concern. NAFLD manifests as hepatic steatosis, precipitating insulin resistance and metabolic syndrome. This study aims to validate the regenerative potential of chimeric fibroblast growth factor 21 (FGF21) and Hepatocyte Growth Factor Receptor (HGFR) in NAFLD-afflicted liver cells. AML12, a murine hepatocyte cell line, was utilized to gauge the regenerative effects of chimeric FGF21/HGFR expression. Polysaccharide accumulation was affirmed through Periodic acid-Schiff (PAS) staining, while LDL uptake was microscopically observed with labeled LDL. The expression of FGF21/HGFR and NAFLD markers was analyzed by mRNA analysis with RT-PCR, which showed a decreased expression in acetyl-CoA carboxylase 1 (ACC1) and sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) with increased expression of hepatocellular growth factor (HGF), hepatocellular nuclear factor 4 alpha (HNF4A), and albumin (ALB). These findings affirm the hepato-regenerative properties of chimeric FGF21/HGFR within AML12 cells, opening novel avenues for therapeutic exploration in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
3.
Cancer Lett ; 588: 216780, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38462033

RESUMO

Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Pulmonares/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
4.
Bioconjug Chem ; 35(3): 389-399, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470611

RESUMO

The Mesenchymal Epithelial Transition (MET) receptor tyrosine kinase is upregulated or mutated in 5% of non-small-cell lung cancer (NSCLC) patients and overexpressed in multiple other cancers. We sought to develop a novel single-domain camelid antibody with high affinity for MET that could be used to deliver conjugated payloads to MET expressing cancers. From a naïve camelid variable-heavy-heavy (VHH) domain phage display library, we identified a VHH clone termed 1E7 that displayed high affinity for human MET and was cross-reactive with MET across multiple species. When expressed as a bivalent human Fc fusion protein, 1E7-Fc was found to selectively bind to EBC-1 (MET amplified) and UW-Lung 21 (MET exon 14 mutated) cell lines by flow cytometry and immunofluorescence imaging. Next, we investigated the ability of [89Zr]Zr-1E7-Fc to detect MET expression in vivo by PET/CT imaging. [89Zr]Zr-1E7-Fc demonstrated rapid localization and high tumor uptake in both xenografts with a %ID/g of 6.4 and 5.8 for EBC-1 and UW-Lung 21 at 24 h, respectively. At the 24 h time point, clearance from secondary and nontarget tissues was also observed. Altogether, our data suggest that 1E7-Fc represents a platform technology that can be employed to potentially both image and treat MET-altered NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos de Domínio Único , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral
5.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367665

RESUMO

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Assuntos
Antineoplásicos Imunológicos , Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B , MicroRNAs , Proteínas Proto-Oncogênicas c-met , RNA Longo não Codificante , Rituximab , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
Mod Pathol ; 37(4): 100451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369190

RESUMO

MET amplification (METamp) represents a promising therapeutic target in non-small cell lung cancer, but no consensus has been established to identify METamp-dependent tumors that could potentially benefit from MET inhibitors. In this study, an analysis of MET amplification/overexpression status was performed in a retrospectively recruited cohort comprising 231 patients with non-small cell lung cancer from Shanghai Chest Hospital (SCH cohort) using 3 methods: fluorescence in situ hybridization (FISH), hybrid capture-based next-generation sequencing, and immunohistochemistry for c-MET and phospho-MET. The SCH cohort included 130 cases known to be METamp positive by FISH and 101 negative controls. The clinical relevance of these approaches in predicting the efficacy of MET inhibitors was evaluated. Additionally, next-generation sequencing data from another 2 cohorts including 22,010 lung cancer cases were utilized to examine the biological characteristics of different METamp subtypes. Of the 231 cases, 145 showed MET amplification/overexpression using at least 1 method, whereas only half of them could be identified by all 3 methods. METamp can occur as focal amplification or polysomy. Our study revealed that the inconsistency between next-generation sequencing and FISH primarily occurred in the polysomy subtype. Further investigations indicated that compared with polysomy, focal amplification correlated with fewer co-occurring driver mutations, higher protein expressions of c-MET and phospho-MET, and higher incidence in acquired resistance than in de novo setting. Moreover, patients with focal amplification presented a more robust response to MET inhibitors compared with those with polysomy. Notably, a strong correlation was observed between focal amplification and programmed cell death ligand-1 expression, indicating potential therapeutic implications with combined MET inhibitor and immunotherapy for patients with both alterations. Our findings provide insights into the molecular complexity and clinical relevance of METamp in lung cancer, highlighting the role of MET focal amplification as an oncogenic driver and its feasibility as a primary biomarker to further investigate the clinical activity of MET inhibitors in future studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , Hibridização in Situ Fluorescente , Mutação , China , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Aberrações Cromossômicas , Amplificação de Genes
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339049

RESUMO

Although conventional combination chemotherapies for advanced gastric cancer (GC) increase survival, such therapies are associated with major adverse effects; more effective and less toxic treatments are required. Combinations of different anti-cancer drugs, for example, paclitaxel plus ramucirumab, have recently been used as second-line treatments for advanced GC. This study evaluated how copy number variations of the MET gene, MET mutations, and MET gene and protein expression levels in human GC cells modulate the susceptibility of such cells to single-agent (tepotinib, ramucirumab, or paclitaxel) and doublet (tepotinib-plus-paclitaxel or ramucirumab-plus-paclitaxel treatment regimens. Compared with ramucirumab-plus-paclitaxel, tepotinib-plus-paclitaxel better inhibited the growth of GC cells with MET exon 14 skipping mutations and those lacking MET amplification but containing phosphorylated MET; such inhibition was dose-dependent and associated with cell death. Tepotinib-plus-paclitaxel and ramucirumab-plus-paclitaxel similarly inhibited the growth of GC cells lacking MET amplification or MET phosphorylation, again in a dose-dependent manner, but without induction of cell death. However, tepotinib alone or tepotinib-plus-ramucirumab was more effective against c-MET-positive GC cells (>30 copy number variations) than was ramucirumab or paclitaxel alone or ramucirumab-plus-paclitaxel. These in vitro findings suggest that compared with ramucirumab-plus-paclitaxel, tepotinib-plus-paclitaxel better inhibits the growth of c-MET-positive GC cells, cells lacking MET amplification but containing phosphorylated MET, and cells containing MET mutations. Clinical studies are required to confirm the therapeutic effects of these regimens.


Assuntos
Piperidinas , Proteínas Proto-Oncogênicas c-met , Piridazinas , Pirimidinas , 60500 , Neoplasias Gástricas , Humanos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Variações do Número de Cópias de DNA , Paclitaxel , Fosforilação , Neoplasias Gástricas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
8.
Cells ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334610

RESUMO

Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos/farmacologia
9.
Lung Cancer ; 188: 107468, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181454

RESUMO

BACKGROUND: MET and AXL dysregulations are implicated in acquired resistance to EGFR-TKIs in NSCLC. But consensus on the optimal definition for MET/AXL dysregulations in EGFR-mutant NSCLC is lacking. Here, we investigated the efficacy and tolerability of ningetinib (a MET/AXL inhibitor) plus gefitinib in EGFR-mutant NSCLC, and evaluated the clinical relevance of MET/AXL dysregulations by different definitions. METHODS: Patients in this phase 1b dose-escalation/dose-expansion trial received ningetinib 30 mg/40 mg/60 mg plus gefitinib 250 mg once daily. Primary endpoints were tolerability (dose-escalation) and objective response rate (dose-expansion). MET/AXL status were analyzed using FISH and IHC. RESULTS: Between March 2017 and January 2021, 108 patients were enrolled. The proportion of MET focal amplification, MET polysomy, MET overexpression, AXL amplification and AXL overexpression is 18.1 %, 5.6 %, 55.8 %, 8.1 % and 45.3 %, respectively. 6.8 % patients have concurrent MET amplification and AXL overexpression. ORR is 30.8 % for tumors with MET amplification, 0 % for MET polysomy, 24.1 % for MET overexpression, 20 % for AXL amplification and 27.6 % for AXL overexpression. For patients with concurrent MET amplification and AXL overexpression, ningetinib plus gefitinib provides an ORR of 80 %, DCR of 100 % and median PFS of 4.7 months. Tumors with higher MET copy number and AXL expression tend to have higher likelihood of response. Biomarker analyses show that MET focal amplification and overexpression are complementary in predicting clinical benefit from MET inhibition, while AXL dysregulations defined by an arbitrary level may dilute the efficacy of AXL blockade. CONCLUSIONS: This study demonstrates that combined blockade of MET, AXL and EGFR is a feasible strategy for a subset of EGFR-mutant NSCLC. TRIAL REGISTRATION: Chinadrugtrials.org.cn, CTR20160875.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Biomarcadores
10.
Cell Mol Life Sci ; 81(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212428

RESUMO

Although amplifications and mutations in receptor tyrosine kinases (RTKs) act as bona fide oncogenes, in most cancers, RTKs maintain moderate expression and remain wild-type. Consequently, cognate ligands control many facets of tumorigenesis, including resistance to anti-RTK therapies. Herein, we show that the ligands for the RTKs MET and RON, HGF and HGFL, respectively, are synthesized as inactive precursors that are activated by cellular proteases. Our newly generated HGF/HGFL protease inhibitors could overcome both de novo and acquired cetuximab resistance in colorectal cancer (CRC). Conversely, HGF overexpression was necessary and sufficient to induce cetuximab resistance and loss of polarity. Moreover, HGF-induced cetuximab resistance could be overcome by the downstream MET inhibitor, crizotinib, and upstream protease inhibitors. Additionally, HAI-1, an endogenous inhibitor of HGF proteases, (i) was downregulated in CRC, (ii) exhibited increased genomic methylation that correlated with poor prognosis, (iii) HAI-1 expression correlated with cetuximab response in a panel of cancer cell lines, and (iv) exogenous addition of recombinant HAI-1 overcame cetuximab resistance in CC-HGF cells. Thus, we describe a targetable, autocrine HAI-1/Protease/HGF/MET axis in cetuximab resistance in CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Cetuximab/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inibidores de Proteases/farmacologia , Peptídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia
11.
J Gene Med ; 26(1): e3644, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072402

RESUMO

BACKGROUND: Melanoma, a frequently encountered cutaneous malignancy characterized by a poor prognosis, persists in presenting formidable challenges despite the advancement in molecularly targeted drugs designed to improve survival rates significantly. Unfortunately, as more therapeutic choices have developed over time, the gradual emergence of drug resistance has become a notable impediment to the effectiveness of these therapeutic interventions. The hepatocyte growth factor (HGF)/c-met signaling pathway has attracted considerable attention, associated with drug resistance stemming from multiple potential mutations within the c-met gene. The activation of the HGF/c-met pathway operates in an autocrine manner in melanoma. Notably, a key player in the regulatory orchestration of HGF/c-met activation is the long non-coding RNA MEG3. METHODS: Melanoma tissues were collected to measure MEG3 expression. In vitro validation was performed on MEG3 to prove its oncogenic roles. Bioinformatic analyses were conducted on the TCGA database to build the MEG3-related score. The immune characteristics and mutation features of the MEG3-related score were explored. RESULTS: We revealed a negative correlation between HGF and MEG3. In melanoma cells, HGF inhibited MEG3 expression by augmenting the methylation of the MEG3 promoter. Significantly, MEG3 exhibits a suppressive impact on the proliferation and migration of melanoma cells, concurrently inhibiting c-met expression. Moreover, a predictive model centered around MEG3 demonstrates notable efficacy in forecasting critical prognostic indicators, immunological profiles, and mutation statuses among melanoma patients. CONCLUSIONS: The present study highlights the potential of MEG3 as a pivotal regulator of c-met, establishing it as a promising candidate for targeted drug development in the ongoing pursuit of effective therapeutic interventions.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Metilação , Proliferação de Células , Linhagem Celular Tumoral
12.
Semin Diagn Pathol ; 41(1): 28-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135585

RESUMO

Hereditary papillary renal cell carcinoma (HPRCC) is an autosomal dominant syndrome characterized by the occurrence of bilateral and multifocal, classic type papillary renal cell carcinomas. In the recent decades, extensive molecular studies have narrowed the molecular underpinnings of this syndrome to missense mutations in tyrosine kinase domain of MET proto-oncogene. Although MET mutations are specific to HPRCC, it has been found in sporadic papillary renal cell carcinomas and as recently reported, in biphasic squamoid alveolar variant of papillary renal cell carcinoma. Dual MET/VEGFR2 kinase inhibitor and tyrosine kinase inhibitors have shown promising results in systemic therapy for HPRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Síndromes Neoplásicas Hereditárias , Humanos , Carcinoma de Células Renais/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Mutação em Linhagem Germinativa , Proto-Oncogene Mas , Neoplasias Renais/genética , Neoplasias Renais/patologia , Síndromes Neoplásicas Hereditárias/genética
13.
Biochim Biophys Acta Biomembr ; 1866(1): 184236, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793560

RESUMO

Deregulation of the receptor tyrosine kinase MET/hepatocyte growth factor (HGF) pathway results in several pathological processes involved in tumor progression and metastasis. In a different context, MET can serve as an entry point for the bacterium Listeria monocytogenes, when activated by the internalin B (InlB) protein during infection of non-phagocytic cells. We have previously demonstrated that MET requires CD44v6 for its ligand-induced activation. However, the stoichiometry and the steps required for the formation of this complex, are still unknown. In this work, we studied the dynamics of the ligand-induced interaction of CD44v6 with MET at the plasma membrane. Using Förster resonance energy transfer-based fluorescence lifetime imaging microscopy in T-47D cells, we evidenced a direct interaction between MET and CD44v6 promoted by HGF and InlB in live cells. In the absence of MET, fluorescence correlation spectroscopy experiments further showed the dimerization of CD44v6 and the increase of its diffusion induced by HGF and InlB. In the presence of MET, stimulation of the cells by HGF or InlB significantly decreased the diffusion of CD44v6, in line with the formation of a ternary complex of MET with CD44v6 and HGF/InlB. Finally, similarly to HGF/InlB, disruption of liquid-ordered domains (Lo) by methyl-ß-cyclodextrin increased CD44v6 mobility suggesting that these factors induce the exit of CD44v6 from the Lo domains. Our data led us to propose a model for MET activation, where CD44v6 dimerizes and diffuses rapidly out of Lo domains to form an oligomeric MET/ligand/CD44v6 complex that is instrumental for MET activation.


Assuntos
Fator de Crescimento de Hepatócito , Listeria monocytogenes , Fator de Crescimento de Hepatócito/metabolismo , Ligantes , Listeria monocytogenes/metabolismo , Proteínas de Membrana/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Humanos
14.
Expert Opin Biol Ther ; 23(11): 1137-1149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078403

RESUMO

BACKGROUND: Solid tumors are becoming prevalent affecting both old and young populations. Numerous solid tumors are associated with high cMET expression. The complexity of solid tumors combined with the highly interconnected nature of the cMET/HGF pathway with other cellular pathways make the pursuit of finding an effective treatment extremely challenging. The current standard of care for these malignancies is mostly small molecule-based chemotherapy. Antibody-based therapeutics as well as antibody drug conjugates are promising emerging classes against cMET-overexpressing solid tumors. RESEARCH DESIGN AND METHODS: In this study, we described the design, synthesis, in vitro and in vivo characterization of cMET-targeting Fab drug conjugates (FDCs) as an alternative therapeutic strategy. The format is comprised of a Fab conjugated to a potent cytotoxic drug via a cleavable linker employing lysine-based and cysteine-based conjugation chemistries. RESULTS: We found that the FDCs have potent anti-tumor efficacies in cancer cells with elevated overexpression of cMET. Moreover, they demonstrated a remarkable anti-tumor effect in a human gastric xenograft mouse model. CONCLUSIONS: The FDC format has the potential to overcome some of the challenges presented by the other classes of therapeutics. This study highlights the promise of antibody fragment-based drug conjugate formats for the treatment of solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Imunoconjugados/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos , Linhagem Celular Tumoral
15.
ACS Nano ; 17(22): 22571-22579, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37965838

RESUMO

Oligomerization of cellular membrane receptors plays crucial roles in activating intracellular downstream signaling cascades for controlling cellular behaviors in physiological and pathological processes. However, the reversible and controllable regulation of receptors in a user-defined manner remains challenging. Herein, we developed a versatile DNA nanorobot (nR) with installed aptamers and hairpin structures to reversibly and controllably regulate cell migration. This was achieved by dimerization and de-dimerization of mesenchymal-epithelial transition (Met) receptors through DNA strand displacement reactions. The functionalized DNA nR not only plays similar roles as hepatocyte growth factor (HGF) in inducing cell migration but also allows a downgrade to the original state of cell migration. The advanced DNA nanomachines can be flexibly designed to target other receptors for manipulating cellular behaviors and thus represent a powerful tool for the future of biological and medical engineering.


Assuntos
DNA , Proteínas Proto-Oncogênicas c-met , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Receptores de Superfície Celular
16.
Cell Death Dis ; 14(10): 671, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821451

RESUMO

Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Ubiquitinação , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Ligases/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
17.
J Biol Chem ; 299(10): 105233, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690689

RESUMO

In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.


Assuntos
Proteínas Proto-Oncogênicas c-cbl , Transdução de Sinais , Humanos , Ligantes , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fosforilação , Ubiquitinação , Immunoblotting
18.
Nat Commun ; 14(1): 4467, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491377

RESUMO

Activated by its single ligand, hepatocyte growth factor (HGF), the receptor tyrosine kinase MET is pivotal in promoting glioblastoma (GBM) stem cell self-renewal, invasiveness and tumorigenicity. Nevertheless, HGF/MET-targeted therapy has shown limited clinical benefits in GBM patients, suggesting hidden mechanisms of MET signalling in GBM. Here, we show that circular MET RNA (circMET) encodes a 404-amino-acid MET variant (MET404) facilitated by the N6-methyladenosine (m6A) reader YTHDF2. Genetic ablation of circMET inhibits MET404 expression in mice and attenuates MET signalling. Conversely, MET404 knock-in (KI) plus P53 knock-out (KO) in mouse astrocytes initiates GBM tumorigenesis and shortens the overall survival. MET404 directly interacts with the MET ß subunit and forms a constitutively activated MET receptor whose activity does not require HGF stimulation. High MET404 expression predicts poor prognosis in GBM patients, indicating its clinical relevance. Targeting MET404 through a neutralizing antibody or genetic ablation reduces GBM tumorigenicity in vitro and in vivo, and combinatorial benefits are obtained with the addition of a traditional MET inhibitor. Overall, we identify a MET variant that promotes GBM tumorigenicity, offering a potential therapeutic strategy for GBM patients, especially those with MET hyperactivation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Glioblastoma/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Circular/genética , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Linhagem Celular Tumoral
19.
Angew Chem Int Ed Engl ; 62(36): e202307157, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37450419

RESUMO

Receptor tyrosine kinases (RTKs) are generally activated through their dimerization and/or oligomerization induced by their cognate ligands, and one such RTK hepatocyte growth factor (HGF) receptor, known as MET, plays an important role in tissue regeneration. Here we show the development of ubiquitin (Ub)-based protein ligand multimers, referred to as U-bodies, which act as surrogate agonists for MET and are derived from MET-binding macrocyclic peptides. Monomeric Ub constructs (U-body) were first generated by genetic implantation of a macrocyclic peptide pharmacophore into a structural loop of Ub (lasso-grafting) and subsequent optimization of its flanking spacer sequences via mRNA display. Such U-body constructs exhibit potent binding affinity to MET, thermal stability, and proteolytic stability. The U-body constructs also partially/fully inhibited or enhanced HGF-induced MET-phosphorylation. Their multimerization to dimeric, tetrameric, and octameric U-bodies linked by an appropriate peptide linker yielded potent MET activation activity and downstream cell proliferation-promoting activity. This work suggests that lasso-grafting of macrocycles to Ub is an effective approach to devising protein-based artificial RTK agonists and it can be useful in the development of a new class of biologics for various therapeutic applications.


Assuntos
Fator de Crescimento de Hepatócito , Ubiquitina , Fator de Crescimento de Hepatócito/metabolismo , Ubiquitina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/metabolismo , Fosforilação , Peptídeos/farmacologia , Peptídeos/metabolismo
20.
Immunol Invest ; 52(6): 735-748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409941

RESUMO

BACKGROUND: CAR-T is emerging as an effective treatment strategy for hematologic malignancies, however its effectiveness for treating solid tumors, such as Hepatocellular Carcinoma (HCC) is limited. Here, we screened a variety of CAR-T cells that target c-Met to investigate their potential to induce HCC cell death in vitro. METHODS: Human T cells were transduced to express CARs by lentiviral vector transfection. c-Met expression in human HCC cell lines and CARs expression were monitored by flow cytometry. Tumor cell killing was evaluated by Luciferase Assay System Kit. The concentrations of cytokine were tested by Enzyme-linked immunosorbent assays. Knock down and overexpression studies targeting c-Met were conducted to assess the targeting specificity of CARs. RESULTS: We found that CAR T cells expressing a minimal amino-terminal polypeptide sequence comprising the first kringle (kringle 1) domain (denoted as NK1 CAR-T cells), efficiently killed HCC cell lines that expressed high levels of the HGF receptor c-Met. Furthermore, we report that while NK1 CAR-T cells were efficient at targeting SMMC7221 cells for destruction, and its potency was significantly attenuated in parallel experiments with cells stably expressing short hairpin RNAs (shRNAs) that suppressed c-Met expression. Correspondingly, overexpression of c-Met in the embryonic kidney cell line HEK293T led to their enhanced killing by NK1 CAR-T cells. CONCLUSION: Our studies demonstrate that a minimal amino-terminal polypeptide sequence comprising the kirngle1 domain of HGF is highly relevant to the design of effective CAR-T cell therapies that kill HCC cells expressing high levels of c-Met.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células HEK293 , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Citocinas/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento de Hepatócito/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...